Code: EM3T6, EE3T4

II B. Tech - I Semester - Regular Examinations - December 2014

SWITCHING THEORY AND LOGIC DESIGN (Common for ECM, EEE)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

1 a) Convert the decimal number 508.75 to base 7, 8 and 12.

7 M

b) Represent the decimal number 7258 in

7 M

- i) BCD code
- ii) excess-3 code
- iii)2421 code
- iv) 6311 code
- 2 a) Simplify the following Boolean expressions to a minimum number of literals? 7 M
- $xy+x\overline{y}$ ii) $(x+y)(x+\overline{y})$

 - iii) $xyz+\overline{x}y+xy\overline{z}$ iv) $(\overline{A+B})(\overline{\overline{A+B}})$
 - b) Find the dual and compliment of the following expressions 7 M
 - - $x\bar{y}+\bar{x}y$ ii) $(A\bar{B}+C)\bar{D}+E$
 - iii) (x+y+z)(x+z)(x+y)

3 Fo	or the given function	14 M
	F(A, B, C, D, E) =	
	Σ m (0,1, 2, 3, 4, 5, 9, 10, 16, 17, 18, 19, 20, 22, 25, 26	5)
	$+ \Sigma d (7, 11, 12, 13, 15, 23, 27, 28, 29, 30)$	
	Obtain minimal sop expression using K-Map.	
1 a)	Design a 32:1 Multiplexer using two 16:1 and	
4 a)	2:1 Multiplexers.	8 M
	Z. Hviumpiexers.	0 111
b)	Write short notes on look-ahead adder circuit.	6 M
-,		
5 a)	Implement the following Boolean functions with a PL	
		8 M
	i) $F(x,y,z) = \Sigma(0,1,2,4)$ ii) $F(x,y,z) = \Sigma(0,5,6,7)$	
h)	Implement Full adder circuit using ROM.	6 M
U)	Implement run adder encure asing recivit.	0 1.1
6 a)	Design a modulo-9 counter using T flip-flops with pr	eset
,	and clear inputs.	8 M
b)) Compare synchronous & Asynchronous circuits.	6 M
- \	To 1 ' 1' 1 C-1	. 2
7 a)	Explain the salient features of the finite state machine	; ; 7 M
		/ 171
1 \	Dunger Ales etata dia amama afa gaggianga dataatan sishiah	ı can
b)) Draw the state diagrams of a sequence detector which	1 Call 7 N/
	detect 011.	1 141

8 a) Explain briefly about the hazards and hazard free realizations?	8 M
b) Explain about Races in asynchronous sequential logic circuit.	6 M